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Considering fluctuant dark count rate in practical quantum key distribution (QKD) system, a new decoy-state method with
one vacuum state and one weak decoy state is presented based on a heralded single photon source (HSPS). The method
assumes that the dark count rate of each pulse is random and independent. The lower bound of the count rate and the upper
bound of the error rate of a single photon state are estimated. The method is applied to the decoy-state QKD system with and
without the fluctuation of dark count rate. Because the estimation of the upper bound of a single photon state’s error rate is
stricter, the method can obtain better performance than the existing methods under the same condition of implementation.
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In practice, the unconditional security of quantum key distri-
bution (QKD)[1] has also been ensured even with imperfect
technical condition[2-7]. But the cost of practical QKD’s un-
conditional security is the limited key generation rate and
secure distance. Decoy-state method[8] has been proposed for
improving the perfromace of practical QKD. Following this
seminal work, many researches[9-21] have been done to ad-
vance the decoy-state idea. The conclusions of theories and
experiments show clearly that the decoy-state method can
indeed substantially enhance the performance of practical
QKD. Now, the scholars pay more attention to some ques-
tions needed to be solved when the decoy-state method is put
into practical applications, such as unstable souces[22-25] and
dark count rate fluctuation[26]. The existing decoy-state theory
assumes that the dark count rate is a constant, whatever the
circumstance changes. This assumption is invalid in practice,
because the circumstances and the detector efficiency change
with time. Therefore, a new problem in practice is how to
carry out the decoy-state method securely and efficiently with
the fluctuant dark count rate.

A decoy-state method with weak coherent states (WCSs)
is presented to give the fluctuation of dark count rate in Ref.
[26]. Some researches[27,28] show that the decoy-state method
with a heralded single photon source (HSPS) can obtain better
performance than the method with WCS. In this paper, we

present a decoy-state method with one vacuum state and one
weak decoy state based on HSPS to solve the fluctuation of
dark count rate, and analyze the performance of the method
in detail.

The state of the photons generated in two modes of T and
S by HSPS can be written as
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where |i represents an i-photon state, Pi = xi/(1+x)i+1 is the
probability to get an i-photon pair, and x is the intensity of
one mode. The photon numbers of two modes are always the
same.

We define the yield Yi to be the probability of Bob getting
a detection event conditioned on Alice sending an i-photon
state, which can be named as the count rate and expressed as

                                           ,  (1)

Yi = Y0 + i Y0 i Y0+ i

i=1 i
 ,  (2)
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where Y0 is the dark count rate, i is the transmittance of the
i-photon state, and is the overall transmission between Alice
and Bob.

The error rate of the i-photon state is given by
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We assume that the circumstances change randomly at
every pulse, namely, the dark count rate of each pulse is ran-
dom and independent. Suppose that Bob has two detectors.
Here, Y0j and Y0j represent the actual dark count rates of the
first detector and the second detector at the jth pulse, respec-
tively

i

i
i Y

eYee d00

where e0 is the error rate of the background, and ed is the
probability that the survived photon hits a wrong detector.

The final key generation rate is given by

                                 ,                                                          (3)
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where q is the basis reconciliation factor, and the q for the
BB84 protocol is 1/2. f(x) is the bidirectional error correc-
tion efficiency. H2(x) is the binary Shannon information en-
tropy function, which is given by H2(x)= xlog2(x) (1 x)
log2(1 x). Q1 and e1 are the gain and the error rate of single
photon states. Qu and Eu are the overall gain and quantum bit
error rate (QBER) which can be observed in the experiment.
In order to calculate the final key generation rate, we need to
estimate the lower bound of Y1 and the upper bound of e1.

In our method, the mode S is coded as the signal mode
sent to Bob, and the mode T going to Alice’s own detector as
the triggering signal to forecast the photon number and the
arriving time in the mode S. Here, we are interested in the
case that Alice and Bob use threshold detectors. If Alice’s
detector is triggered, Bob’s detector needs to measure the
received photon state. When the communication is over, we
will estimate the lower bound of Y1 and the upper bound of e1

with the measured results. If the discrepancy between esti-
mation results and theoretical results is big, Eve will be
considered, this communication will be abandoned, and QKD
will be restarted. Contrarily, the final key generation rate can
be calculated with Eq.(4).

In the protocol, Alice randomly changes the intensity of
her pump light among 0, v and u with the probabilities of p1,
p2 and p3 (p1+p2+p3=1), respectively. 0 and v are the expected
intensities of the decoy states, and u is the expected intensity
of the signal state, which satisfy the relations as
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Then we define Qu and Qv to be the overall rates of signal
states and decoy states, respectively, which can be expressed
as

                                              .                                           (5)
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where dA and A are the dark count rate and detection effi-
ciency of Alice’s detector, respectively.

The QBERs of signal states and decoy states are given by

where 0j and j are the dark count rate’s fluctuations of the
first detector and the second detector, respectively. Y0 is the
average dark count rate. Here we assume J is infinite. We
can obtain the following equation

                                              ,                                            (8)
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Eq.(6) shows that the influence of dA on system detection
is neglectable, so we assume dA is a constant.

Similarly, with the fluctuation of dark count rate,Y1 can
be given by

                                                                             ,             (10)
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where Y1 is the average yield of single photon states, and 1j

is the dark count rate’s fluctuation of single photon states.
The error rate of the dark count state of the first detector

at the jth pulse is

                                                            .                           (11)

According to Eq.(3), we have

From Eq.(6), we can obtain

                                                                                      . (12)

                                                                                      . (13)
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Combining Eqs.(8), (10) and (13), we can estimate the
lower bound of Y1



  Optoelectron. Lett.  Vol.8  No.5

where N is the number of total pulses sent by Alice. Here we
assume that N is infinite, and the inequality 22 baba ii

( ba 1  and 2i ) is used.
By solving Eq.(14), the lower bound of Y1 is given by
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It is obvious that the fluctuation of dark count rate has no
influence on Y1 with Eq.(9). So Eq.(15) is the same as Eq.(21)
in Ref.[18] without fluctuation using a different method.

Subsequently, we estimate the upper bound of e1 with
Eqs.(7), (8), (9) and (11).
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where N  is the number of decoy pulses sent by Alice, and it
is infinite. The first inequality in Eq.(16) uses the fact that
the error rate of the i-photon state is greater than that of the
dark count state, namely, jjijij YeYe 00 . The second inequality in
Eq.(16) uses the condition of =min{ 0j}=min{ 0j}=min{ 1j}.

Consequently, the upper bound of e1 is
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We can now calculate the final key rate with Eqs.(4), (15)
and (17). We use the parameters mainly from GYS experi-
ment[30] and Ref.[18]. At Alice’s side, dA=5 10-6, and A=
0.6. At Bob’s side, dB=1.7 10

-6
, B=0.045, ed=0.033, f =

Combining Eqs.(12) and (16), QvEv can be expressed by
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Eq.(18) accords with Eq.(10) in Ref.[29].
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1.16. In simulation, the optimal u is chosen at each distance.
We calculate the final key rates based on our scheme with

= 0, 0.1, 0.2, 0.3, respectively. Fig.1 shows that the key
generation rate and maximal secure distance decrease with
the decrease of . The maximal secure distance is about 172
km with =0, and the maximal secure distance decreases to
169 km, 162 km and 148 km with = 0.1, 0.2, 0.3,
respectively. The dark count rate plays a more important role,
and the effect of the error rate of the dark count rate becomes
more important as the distance increases. For example, when
the transmission distance is less than 100 km, the difference
between the key generation rate with = 0.3 and that with =0
is not large. However, when the transmission distance is larger
than 100 km, the key generation rate with = 0.3 begins to
decrease rapidly.

Fig.1 Performance comparison of the decoy-state method
with various values of 

The decoy-state method in Ref.[18] taking no account of
the fluctuant dark count rate also has one vacuum state and
one weak decoy state, namely, the method and our method
are under the same condition of implementation. Fig.2 shows
that the two curves seem to be one curve when the transmis-
sion distance is less than 140 km. The performance of our

Fig.2 Performance comparison between two decoy-state
methods

method is better  when the transmission distance is over 140
km, because our estimation of e1 is stricter. We not only consider
the error rate of the dark count rate, but also consider the error
rate of the multi-photon state. However, Ref.[18] makes a
pessimistic assumption that all error rates are induced by
single states and dark count.

In summary, considering the fluctuant dark count rate in
practical QKD system, we have presented a new decoy-state
method with one vacuum state and one weak decoy state based
on an HSPS. Our method is applied to the decoy-state QKD
system with and without the fluctuation of dark count rate.
We estimate e1 considering the error rates of the dark count
rate and  the multi-photon state, and get a tighter bound. So
our method obtains better performation than the existing
methods under the same condition of implementation.

[1]   Bennett C. H. and Brassard G., Quantum Cryptography: Pub-
lic Key Distribution and Coin Tossing, IEEE International
Conference on Computer, Systems and Signals Processing,
175 (1984).

[2]   Lo H. K. and Chau H. F., Science 283, 2050 (1999).
[3]   Mayers D., Proc. of Crypto. 96, 343 (1996).
[4]   Shor P. W. and Preskill J., Phys. Rev. Lett. 85, 441 (2000).
[5]   Lütkenhaus N., Phys. Rev. A 61, 052304 (2000).
[6]   Tamaki K., Lütkenhaus N. and Koashi M., Phys. Rev. A 80,

032302 (2009).
[7]    Gottesman D., Lo H. K., Lütkenhaus N. and Preskill J., Quan-

tum Inform. Comput. 4, 325 (2004).
[8]   Hwang W. Y., Phys. Rev. Lett. 91, 057901 (2003).
[9]   Lo H. K., Ma X. F. and Chen K., Phys. Rev. Lett. 94, 230504

(2005).
[10]   Wang X. B., Phys. Rev. Lett. 94, 230503 (2005).
[11]   Wang X. B., Phys. Rev. A 72, 012322 (2005).
[12]   Peng C. Z., Zhang J., Yang D., Gao W. B., Ma H. X., Yin H.,

Zeng H. P., Yang T., Wang X. B. and Pan J. W., Phys. Rev.
Lett. 98, 010505 (2007).

[13]   Adachi Y., Yamamoto T., Koashi M. and Imoto N., Phys.
Rev. Lett. 99, 180503 (2007).

[14]   Wang J., Zhang H. F., Wan X., Gao Y., Cui K., Cai W. Q.,
Chen T. Y., Liang W. and Jin G., Journal of Optoelectronics

Laser 21, 861 (2010). (in Chinese)
[15]   Yin Z. Q., Han Z. F., Chen W., Xu F. X., Wu Q. L. and Guo

G. C., Chin. Phys. Lett. 25, 3547 (2008).
[16]   Zhou Y. Y., Zhou X. J. and Gao J., Optoelectron. Lett. 6,

396 (2010).
[17]   Zhou Y. Y. and Zhou X. J., Optoelectron. Lett. 7, 389 (2011).
[18]   Hu H. P., Wang J. D., Huang Y. X., Liu S. H. and Lu W.,

Acta Phys. Sin. 59, 287 (2010). (in Chinese)
[19]   Curty M., Moroder T., Ma X. F. and Lütkenhaus N., Phys.

Rev. A 79, 032335 (2009).

References



  Optoelectron. Lett.  Vol.8  No.5

[20]   Curty M., Ma X. F., Qi B. and Moroder T., Phys. Rev. A 81,
022310 (2010).

[21]   Xu F. X., Wang S., Han Z. F. and Guo G. C., Chin. Phys. B
19, 100312 (2010).

[22]   Wang X. B., Phys. Rev. A 75, 052301 (2007).
[23]   Wang X. B., PENG C. Z. and PAN J. W., Appl. Phys. Lett.

90, 031110 (2007).
[24]   Wang X. B., Peng C. Z., Zhang J., Yang L. and Pan J. W.,

Phys. Rev. A 77, 042311 (2008).
[25]   Hu J. Z. and Wang X. B., Phys. Rev. A 82, 012331 (2010).

[26]    Gao X., Sun S. H. and Liang L. M., Chin. Phys. Lett. 26, 100307
(2009).

[27]    Zhang S. L., Zou X. B., Li K., Jin C. H. and Guo G. C., Phys.
Rev. A 76, 044304 (2007).

[28]   Mi J. L., Wang F. Q., Lin Q. Q., Liang R. S. and Liu S. H.,
Chin. Phys. B 17, 1178 (2008).

[29]   MA X. F. and Lo H. K., New Journal of Physics 10, 073018
(2008).

[30]   Gobby C., Yuan Z. L. and Shields A. J., Phys. Rev. Lett. 84,
3762 (2004).


